This blog post is part of a series which will teach you:
- How to write a plugin for elasticsearch 5.0 using Maven .
- How to write an ingest plugin for elasticsearch 5.0 (what you are reading now).
- How I wrote the
ingest-bano
plugin which will be hopefully released soonish.
Today, we will focus on writing an Ingest plugin for elasticsearch.
Hey! Wait! You wrote
Ingest
? What is that?
Ingest is a new feature coming in elasticsearch 5.0. It helps you to transform your data on the fly while injecting it into elasticsearch. Read more in elastic blog post .
If you know me and my work before I joined elastic, I have always been in love with data crawling and transformation as I wrote myself some plugins called rivers .
With what we saw in the previous article , we now have a Plugin skeleton ready to host our Ingest code.
Note: this article has been updated on July 2016, the 29th by moving tests to real integration tests .
But first, let’s describe a bit more what Ingest
actually is.
Ingest
If you already know Ingest feature, you can skip this section.
With Ingest, you can:
- define a pipeline
- simulate a pipeline
- use a pipeline at index time to transform data on the fly
The pipeline is used to define all the actions you can perform on a source document. Each action is performed by a processor. A processor basically takes a document as input, transform it then outputs a new version of the document.
A lot of core processors already exists in elasticsearch 5.0 and I can imagine that as this feature will be more and more popular, new processor will be added by the community, either in core or as plugins.
Define a pipeline
Let’s look at one of them: the Lowercase processor .
As you can imagine, the goal is to simply provide a lowercase version of a given field.
Let say that you define an ingest pipeline lowercase-example
like this:
curl -XPUT localhost:9200/_ingest/pipeline/lowercase-example -d '{
"processors" : [
{
"lowercase" : {
"field": "message"
}
}
]
}'
Simulate a pipeline
You can use the _simulate
endpoint to simulate a pipeline without the need of
actually creating a pipeline and indexing a document.
curl -XGET "localhost:9200/_ingest/pipeline/_simulate?pretty" -d '{
"pipeline" : {
"processors" : [
{
"lowercase" : {
"field": "foo"
}
}
]
},
"docs" : [
{
"_source" : {
"foo" : "This test CONTAINS also UPPER-CASE chars"
}
}
]
}'
This gives:
{
"_index" : "test",
"_type" : "doc",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"foo" : "this test contains also upper-case chars"
}
}
Transform a document on the fly
Well. That’s easy. Just add the pipeline
URL parameter to your index operation.
curl -XPUT "localhost:9200/test/doc/1?pipeline=lowercase-example&pretty" -d '{
"foo" : "This test CONTAINS also UPPER-CASE chars"
}'
If you look at what has been really sent to elasticsearch as _source
field:
curl -XGET "localhost:9200/test/doc/1?pretty"
You will see that the document has been transformed:
{
"_index" : "test",
"_type" : "doc",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"foo" : "this test contains also upper-case chars"
}
}
Coding our own processor
Well. This is why you are reading this article, right? Time to do it!
Processor skeleton
So you have basically to write a class which extends AbstractProcessor
.
Here we add a BanoProcessor
in src/main/java/org/elasticsearch/ingest/bano/
package org.elasticsearch.ingest.bano;
import org.elasticsearch.ingest.AbstractProcessor;
import org.elasticsearch.ingest.IngestDocument;
public final class BanoProcessor extends AbstractProcessor {
public final static String NAME = "bano";
protected BanoProcessor(String tag) {
super(tag);
}
@Override
public String getType() {
return NAME;
}
@Override
public void execute(IngestDocument ingestDocument) throws Exception {
// Implement your logic code here
}
}
getType()
gives the processor name. So you will be able to write a pipeline like:
curl -XPUT localhost:9200/_ingest/pipeline/bano-example -d '{
"processors" : [
{
"bano" : { }
}
]
}'
execute(IngestDocument)
is where you will implement all the logic. Transformation of data that is.
For now, the processor we just defined won’t do anything. It will leave the source document as is.
Register the processor
We need to tell elasticsearch that this processor exists.
To do that we need to provide a factory which implements Processor.Factory
:
public static final class BanoFactory implements Processor.Factory {
@Override
public Processor create(Map<String, Processor.Factory> processorFactories, String tag, Map<String, Object> config)
throws Exception {
return new BanoProcessor(tag);
}
}
processorFactories
gives you access to other processors which may be created inside this processortag
is the tag for the processor . It can be used when you define a processor in a pipeline.config
gives you access to the configuration for the pipeline. We will cover that in a next section.
Note that you can create this class as an inner class of the BanoProcessor class itself.
We now need to tell the plugin that it will provide Ingest plugin features by implementing IngestPlugin
interface and
overriding the getProcessors
method:
public class IngestBanoPlugin extends Plugin implements IngestPlugin {
@Override
public Map<String, Processor.Factory> getProcessors(Processor.Parameters parameters) {
return Collections.singletonMap("bano", new BanoProcessor.BanoFactory());
}
}
Test the processor
We can now add more tests to check that our processor can be used in a pipeline.
We can create a new integration test class BanoProcessorIT
in src/test/java/org/elasticsearch/ingest/bano/
:
public class BanoProcessorIT extends AbstractITCase {
public void testSimulateProcessor() throws Exception {
String json = jsonBuilder().startObject()
.startObject("pipeline")
.startArray("processors")
.startObject()
.startObject("bano")
.endObject()
.endObject()
.endArray()
.endObject()
.startArray("docs")
.startObject()
.field("_index", "index")
.field("_type", "type")
.field("_id", "id")
.startObject("_source")
.field("foo", "bar")
.endObject()
.endObject()
.endArray()
.endObject().string();
Map<String, Object> expected = new HashMap<>();
expected.put("foo", "bar");
Response response = client.performRequest("POST", "/_ingest/pipeline/_simulate",
Collections.emptyMap(), new NStringEntity(json, ContentType.APPLICATION_JSON));
Map<String, Object> responseMap = entityAsMap(response);
assertThat(responseMap, hasKey("docs"));
List<Map<String, Object>> docs = (List<Map<String, Object>>) responseMap.get("docs");
assertThat(docs.size(), equalTo(1));
Map<String, Object> doc1 = docs.get(0);
assertThat(doc1, hasKey("doc"));
Map<String, Object> doc = (Map<String, Object>) doc1.get("doc");
assertThat(doc, hasKey("_source"));
Map<String, Object> docSource = (Map<String, Object>) doc.get("_source");
assertThat(docSource, is(expected));
}
}
This test basically sends a JSON document {"foo":"bar"}
to the simulate pipeline method and check that we get back the same
content as we did not transform yet anything.
Note that this test was failling with elasticsearch 5.0.0-alpha5 because of this bug I found thanks to the Randomized Testing framework! :) As we moved our tests to REST tests, it won’t fail anymore.
Implement the logic
Now that we are all set, we can enrich our documents in BanoProcessor#execute(IngestDocument)
method.
As an example, we are going to copy the value existing in field foo
to a new field named new_foo
.
So if we have a document like:
{
"foo": "bar"
}
It should become:
{
"foo": "bar",
"new_foo": "bar"
}
Implementation will be:
@Override
public void execute(IngestDocument ingestDocument) throws Exception {
if (ingestDocument.hasField("foo")) {
ingestDocument.setFieldValue("new_foo", ingestDocument.getFieldValue("foo", String.class));
}
}
Of course, we need to modify our test now as we expect a new field in our document:
Map<String, Object> expected = new HashMap<>();
expected.put("foo", "bar");
expected.put("new_foo", "bar");
Make it more flexible
Well, we are reading the original value from foo
which is hardcoded here.
And we are writing to new_foo
which is also hardcoded.
Let’s fix that by adding 2 optional settings for our processor:
source
: source field, defaults to"foo"
target
: target field, defaults to"new_" + source
Let’s change our constructor for BanoProcessor and add 2 private fields:
private final String sourceField;
private final String targetField;
protected BanoProcessor(String tag, String sourceField, String targetField) {
super(tag);
this.sourceField = sourceField;
this.targetField = targetField;
}
Use them in execute(IngestDocument)
method:
@Override
public void execute(IngestDocument ingestDocument) throws Exception {
if (ingestDocument.hasField(sourceField)) {
ingestDocument.setFieldValue(targetField, ingestDocument.getFieldValue(sourceField, String.class));
}
}
Change now the BanoFactory
class:
@Override
public Processor create(Map<String, Processor.Factory> processorFactories, String tag, Map<String, Object> config) throws
Exception {
String source = readStringProperty(NAME, tag, config, "source", "foo");
String target = readStringProperty(NAME, tag, config, "target", "new_" + source);
return new BanoProcessor(tag, source, target);
}
Note that readStringProperty
method comes from org.elasticsearch.ingest.ConfigurationUtils
class.
If you run the existing test, it should pass as we are using all default values.
We can add a new test which checks that we can read from another field than foo
, here anotherfoo
.
But first as we will run the same kind of test again and again, let’s generify the test code:
private void simulatePipeline(String json, Map<String, Object> expected) throws IOException {
Response response = client.performRequest("POST", "/_ingest/pipeline/_simulate",
Collections.emptyMap(), new NStringEntity(json, ContentType.APPLICATION_JSON));
Map<String, Object> responseMap = entityAsMap(response);
assertThat(responseMap, hasKey("docs"));
List<Map<String, Object>> docs = (List<Map<String, Object>>) responseMap.get("docs");
assertThat(docs.size(), equalTo(1));
Map<String, Object> doc1 = docs.get(0);
assertThat(doc1, hasKey("doc"));
Map<String, Object> doc = (Map<String, Object>) doc1.get("doc");
assertThat(doc, hasKey("_source"));
Map<String, Object> docSource = (Map<String, Object>) doc.get("_source");
assertThat(docSource, is(expected));
}
And implements the new test based on that:
public void testSimulateProcessorConfigSource() throws Exception {
String json = jsonBuilder().startObject()
.startObject("pipeline")
.startArray("processors")
.startObject()
.startObject("bano")
.field("source", "anotherfoo")
.endObject()
.endObject()
.endArray()
.endObject()
.startArray("docs")
.startObject()
.field("_index", "index")
.field("_type", "type")
.field("_id", "id")
.startObject("_source")
.field("anotherfoo", "bar")
.endObject()
.endObject()
.endArray()
.endObject().string();
Map<String, Object> expected = new HashMap<>();
expected.put("anotherfoo", "bar");
expected.put("new_anotherfoo", "bar");
simulatePipeline(json, expected);
}
Also test that you can write to another target field:
public void testSimulateProcessorConfigTarget() throws Exception {
String json = jsonBuilder().startObject()
.startObject("pipeline")
.startArray("processors")
.startObject()
.startObject("bano")
.field("source", "anotherfoo")
.field("target", "another_new_foo")
.endObject()
.endObject()
.endArray()
.endObject()
.startArray("docs")
.startObject()
.field("_index", "index")
.field("_type", "type")
.field("_id", "id")
.startObject("_source")
.field("anotherfoo", "bar")
.endObject()
.endObject()
.endArray()
.endObject().string();
Map<String, Object> expected = new HashMap<>();
expected.put("anotherfoo", "bar");
expected.put("another_new_foo", "bar");
simulatePipeline(json, expected);
}
Remove the source field
We can also add another option to remove the source field as we copied the content we want to the target field.
Let’s add a new remove
boolean option:
// ...
private final Boolean removeOption;
protected BanoProcessor(String tag, String sourceField, String targetField, Boolean removeOption) {
// ...
this.removeOption = removeOption;
}
@Override
public void execute(IngestDocument ingestDocument) throws Exception {
if (ingestDocument.hasField(sourceField)) {
ingestDocument.setFieldValue(targetField, ingestDocument.getFieldValue(sourceField, String.class));
if (removeOption) {
ingestDocument.removeField(sourceField);
}
}
}
public static final class BanoFactory implements Processor.Factory {
@Override
public Processor create(Map<String, Processor.Factory> processorFactories, String tag, Map<String, Object> config) throws
Exception {
// ...
Boolean remove = readBooleanProperty(NAME, tag, config, "remove", false);
return new BanoProcessor(tag, source, target, remove);
}
}
Existing tests should still work. Let’s add another test:
public void testSimulateProcessorConfigRemove() throws Exception {
String json = jsonBuilder().startObject()
.startObject("pipeline")
.startArray("processors")
.startObject()
.startObject("bano")
.field("remove", true)
.endObject()
.endObject()
.endArray()
.endObject()
.startArray("docs")
.startObject()
.field("_index", "index")
.field("_type", "type")
.field("_id", "id")
.startObject("_source")
.field("foo", "bar")
.endObject()
.endObject()
.endArray()
.endObject().string();
Map<String, Object> expected = new HashMap<>();
expected.put("new_foo", "bar");
simulatePipeline(json, expected);
}
What’s next?
In a coming blog post, I’ll explain how to create an ingest plugin which will helps you to transform a french postal address to geo coordinates or the other way around.
Stay tuned!